

The Hope for Pakistan's Future

Dr. SAMAR MUBARAKMAND NI, HI, SI

Planning Commission

Total Power Generation of World)								
No	Source	%	No	Source	%			
1	Coal Based	41.61	4	Nuclear	13.75			
2	Oil Based	5.63	5	Hydro Power	15.57			
3	Gas Based	20.87	6	Others	2.25			
	Total Generation capacity of India							
No	Source	%	No	Source	%			
1	Coal Based	64.6	4	Hydro Power	22.8			
2	Gas Based	53.3	5	Nuclear	2.9			
3	Oil Based	0.9	6	Others	9.9			
	Total Ge	neration ca	apacit	y of Pakistan	<u>l</u>			
No	Source	%	No	Source	%			
1	Coal Based	2.27	4	Hydro Power	32.54			
2	Gas Based	4.50	5	Nuclear	2.23			
3	Oil Based	58.37						

Current Energy Scenario

- Current Energy Crises is causing Rs.230 billion loss ever year (ADB Report).
- Loss of 400,000 jobs, hitting poorest of poor leading to culture of insurgency (Report of Beacon House University).
- Current dependable power supply hovers around 14000 MW in summer whereas it drops down in winter.
- On the other hand power demand in year 2030 would be more than 100,000 MW (PEPCO).
- In this situation Thar Coal can play a pivotal role in meeting this Energy Crisis both in Long term and Short term.
- Coal has to be declared matter of National Security & of Strategic Importance so that Donors and Multilaterals invest in it.

Thar Coal Potential

Thar Lignite Coal reserves

175 billion tons

spread over 9600 sq. km Lignite coal

30 ~ 55% moisture 6200~11,000 Btu/lb

Generation potential 100,000 MW consuming 536 million tones/year

Only viable solution in long term for meeting energy demands of the country is development of Thar Coal.

- Only Thar Coal can provide guaranteed long term energy security to Pakistan.
- Major tool for Import substitution of expensive RFO in future
- Potential Poverty alleviation tool
- Enhanced Industrial competitiveness due to cost effective energy

Total reserve is equivalent to 50 billion tone of oil (more than Iran and Saudi Arabia combined oil reserves) or over 2000 TCF of Gas (42 times greater than total gas reserves discovered in Pakistan so far)

STATUS OF THAR BLOCKS

	Exploration License	Status
1	Block I	Available for Investment
2	Engro Sindh Coal Mining Company (40% Sindh Government; 60% Engro) 1200 MW	Feasibility study due in June 2010; Strip mining and power generation potential 4000MW, 24 million tons/year for 30 years. PEPCO has also Signed MOU for 1200MW Power Plant
3 A	Cougar Energy (Australia) Under Ground Coal Gasification Project 400 MW	Drilling License awarded to an Australian firm Pilot Burn planned in 36 months; Technology planned is Ergo Exergy ; 400MW planned;
4	Bin Daen Group (UAE)) 1000MW	<i>Integrated Coal to power project</i> , 1000MW planned; currently exploring possible partnerships to carry out feasibility studies.
5	Under Ground Coal Gasification Project Dr Samar Mubarakmand 100MW	Pilot project for 100 MW planned for mid 2012. Gasifier designed, major equipment ordered, technical team is mobilized, colony being built and drilling in full swing. Pilot burn planned for December 2010.
6	Oracle, PLC (UK) 600MW	Strip mining; 600MW planned. ESIA completed; anticipate mine commencement Dec. 2011.
	Block III B, VII & VIII	Available for Investment

Underground coal gasification may provide a secure

in the

energy supply and reduce greenhouse gas emissions.

Hole

Lawrence Livermore National Laboratory

Distribution of UCG sites

4417X 04 648 ABCINC NCE AN 12/11/12/14 Friend String Law Geneniand IDE HEMARKS Alasida SI 3.1 RUSSIA CANADA KAZARHISTAN WHICH PROPERTY AND INCONCION MA DEPARTURNESS, SATE BA State 14 CREATE UNITED STATE 0014 644 CHINA ALC: NO -----No DECKING Transa. **ERRIDATE** INDONESIA BRAZIL and a lot Transh Polynesia (77) (AUSTRALIA COUTE AT CARRY OF CAR ORE ARCENTIN •Test site Frank b Sauthern and A Commercial facility And then it with postilelists occasi Suburble long statil and 10220-14

Temperature 200-550°C	Temperature 550-900°C	Temperature more than 900°C			
Drying & Pyrolysis Zone	Reduction Zone	Oxidation Zone			
Coal \longrightarrow CH ₄ + H ₂ O	$C + H_2O \longrightarrow CO + H_2$	$C + O_2 \longrightarrow CO_2$			
$CO + CO_2$	$CO_2 + C \longrightarrow 2CO$	$C +_{1/2}O_2 \longrightarrow CO$			
H ₂ + C	$CO + H_2O \implies CO_2 + H_2$	$CO +_{1/2}O_2 \longrightarrow CO_2$			
Hydrocarbons	$CO + 2H_2 \longrightarrow CH_4$	$Coal + O_2 \longrightarrow CO_2 + CO + H_2O$			

Schematic of the processes involved in UCG

Fig. 1. Conceptual design of Chinchilla UCG-IGCC plant.

A gas compressor is required to bring the pressure of the gas to the level acceptable for the gas turbine. Water separated from the gas flow is used for cooling the raw gas in a heat exchanger and air in the air compressor intercoolers. It will also comprise a part of makeup water needed to operate the steam cycle once a steam turbine is installed.

Generation of 100 M Watts through underground coal gasification

Total project cost	US \$ = 115.6 million (Rs. 9883.6 million)
Total funds received	US \$ = 7.48 million (Rs. 639.6 million)
Funds allocated in PSDP 2011 – 2012	US \$ = 4.1 million (Rs. 350.33 million)

of first release of fund & commencement of the project = 28 April, 2010

a. CIVIL WORK

S. No.	Description	Date	Status
1	Land Acquisition	2 – 7 - 2010	Acquired about 27 acres
2	Residential Colony	17 – 7 - 2010	90 % complete (39,312 sq. ft)
3	Technical Plant, workshop, stores, laboratory, compressor station, power station, control room and admin block.	1 – 11 - 2010	60 % complete (27,756 sq. ft.)

b. Main Machinery (All purchases under Sindh PPRA rules)

S. No.	Description	Date	Status
1	Air compressor (process)	15 – 8 – 2010 Expected delivery (15 –1– 2011)	Not delivered
2	Air compressor (process) placed to the second lowest for Hitachi Compressor after negotiation at the lowest cost. Expected date of delivery is Third Week of April 2011	18 – 2 – 2010 (Expected date of Delivery is Third Week of April 2011)	These machines have been delayed by the manufacturers due to the earthquake and sonami in Japan. Now the expected date of Delivery is Third Week of July 2011)
3.	Air compressor (Startup)	15 – 12 - 2010 Expected delivery (15 – 4 – 2011)	These machines have been delayed by the manufacturers due to the labour shortage. Now the expected date of Delivery is First Week of July 2011.)

b. Main Machinery (All purchases under Sindh PPRA rules)

S. No.	Description	Date	Status
4.	Diesel Generators	15 -08 - 2010 Expected delivery (15 – 12 – 2010)	Delivered
5	Workshop equipment	15 -08 - 2010 Expected delivery (15 – 12 – 2010)	80 % delivered
6	Steel pipes for casing and surface piping with fittings	15 - 07 - 2010 Expected delivery (15 – 12 – 2010)	90 % delivered
7	Control instrumentation, gas analyzer, industrial computer etc.	25 – 11 - 2010 Expected delivery (1 – 4 – 2011)	60 % delivered
8	Furniture	25 – 11 - 2010 Expected delivery (1 – 4 – 2011)	90 % delivered
9	Air conditioners	15 -08 - 2010 Expected delivery (15 – 12 – 2010)	delivered
10	Vehicles	07 - 07 - 2010 Expected delivery (07 – 10 – 2010)	delivered

c. Construction of First 50 M Watts Gasifier 98% Complete (Second gasifier will commence on the availability of funds)

S. No.	Description	Date	Status	
1	Drilling	15 – 8 – 2010 (Expected delivery (15 – 6 – 2011)	 98 % complete Total wells Drilled Total drilling with 8 inch bit Total reaming with 11 inch bit Total reaming with 15 inch bit Total coring accomplished Total accumulative drilling 	35 Nos. 17118 ft. 1470 ft 17118 ft. 653 ft 36365 ft
2	Casing	15 – 8 – 2010 (Expected delivery (15 – 6 – 2011)	97 % complete Tota low 900	al number of pipes vered=18000 feet) Nos. 20 ft each
3	Cementation and sealing	15 – 8 – 2010 (Expected delivery (15 – 6 – 2011)	97 % complete Total number of consumed = 1272 No.	f cement bags

The gasifier is near completion as the deeper coal horizon is being tapped. The drilling to the combustion zone is being accomplished.

IMMEDIATE SOLUTION FOR INDUSTRY

Coal Gasification

- The Coal Gasifier Op consists of three zones:
 - Pyrolysis zone (CSTR Model)
 - Cracking volatile part of coal
 - Combustion reactions
 - Gasification zone (PFR Model)
 - Char-Gas (H2, CO, CO2, CH4, etc...) Reactions
 - Char-Oxygen Reactions
 - Char-Steam Reaction,
 - Water-Gas Reaction
 - Methane-Steam Reaction
 - Produce raw Syngas,
 - Coal residue
 - Quench zone (Separator Model)
 - Gas and molten ash quenched in water bath and
 - Conduct Gas, Liquid & Solid three phase separation
 - Ash/slag discharged at bottom as inert

Coal Gasifer Technologic Specification

SINGLE STAGE COAL GASIFIER TECHNOLOGIC SPECFICATION 单段式煤气发生炉技术性能参数

型号 Type	QM1.0	QM1.5	QM2.0	QM2.4	QM2.6	QM3.0	QM3.2
炉膛内径mm I.D.of chamber	1000	1500	2000	2400	2600	3000	3200
炉膛截面积m ² Chamber cross-section area	0.785	1.77	3.14	4.52	5.31	7.07	8.04
水套受热面积m ² Heat perception area of water jacket	6.84	10.37	17.84	24.66	31.32	36.33	38.75
适用煤种Applicable coal	种Applicable coal 不粘结或弱粘结无烟煤、烟煤或焦炭。煤质应符合GB 9143要求 Non-caking or Weak-caking Anthracite bituminous coal,coke,coal property should comcident with the requirement of GBS					求 rement of GB9143	
灰层高度(mm)Ash layer	100~300	100~300	100~300	100~300	100~300	100~300	100~300
煤的粒度Coal size mm			13~25	5、25~50、5	0~100		San Jaker
耗煤量kg/h Coal consumption	150~240	350~550	600~900	900~1400	1000~1500	1500~2200	1700~2600
气化剂Gasifying agent			空气+	水蒸汽Air+S	Steam		
空气消耗量m ^³ /kg煤(coal) Air consumption	2.2~2.8	2.2~2.8	2.2~2.8	2.2~2.8	2.2~2.8	2.2~2.8	2.2~2.8
蒸汽消耗量kg/kg煤(coal) Steam consumption	0.3~0.5	0.3~0.5	0.3~ <mark>0.5</mark>	0.3~0.5	0.3~0.5	0.3~0.5	0.3~0.5
煤气产量Nm ³ /h Gas output	450~700	980~1600	1750~2800	2500~4000	3000~4800	4000~6500	4600~7400
煤气热值kJ/m ³ Net heating value	5020~6060	5020~6060	5020~6060	5020~6060	5020~6060	5020~6060	5020~6060

Coal Gasifer Technologic Specification

煤气出口压力kPa Gas pressure	<0.95	<0.98	<0.98	<0.98	<1.5	<1.5	<1.5
煤气出口温度℃ Gas temperature	400~550	400~550	400~550	400~550	400~550	400~550	400~550
最大炉底鼓风压力kPa Max.blast pressure	2.0	2.45	3.5	3.5	4.0	6.0	6.0
饱和空气温度℃ Saturated temperature	50~65	50~65	50~65	50~65	50~65	50~65	50~65
探火孔汽封压力MPa Steam seal pressure of Poking hole	0.25	0.25	0.25	0.25	0.25	0.25	0.25
水套蒸汽产量kg/h Steam products	45~120	250~300	300	450	500	550	550
水套蒸汽压力MPa Inner steam pressure	0.294	0.294	0.294	0.294	0.294	0.294	0.294
加煤方式 Feeding coal mode	手动、自动Manual,Automatic						
加煤机驱动装置 Coal feeding system	双钟罩加煤、机械加煤机 Bell charging,mechanical charging 双钟罩加煤、液压加煤 Bell charging Hydraulic charging						
灰盘转速r/h Ash tray speed	2.87	2.76	2.23	2	1.7	1.7	1.7
灰盘传动电机功率kW Ash tray driving power	3	3	4	4	4	11×2	11×2
煤斗提升电机功率kW Coal bucket lifting power	1.1	1.1	1.1	2.2	2.2	3	3
排渣形式 Discharging ash mode	湿式,自动排渣, * 干式,自动排渣 Automatically wet discharging ash, * Automatically dry discharging ash						

Technical Specification for Coal Gas Generator

Model: 500GF1-RM 500KW Coal Gas Generator Set

Proposal for Under Ground Coal Gasification Project - Thar

Caterpillar Gas Generator Set Model G3516, 950 Kwe / 1188 KVA

.

COPER DEPOSIT IN EL-5 AREA

GOLD DEPOSIT IN EL-5 AREA

